A strong log-concavity property for measures on Boolean algebras

نویسندگان

  • Jeff Kahn
  • M. Neiman
چکیده

We introduce the antipodal pairs property for probability measures on finite Boolean algebras and prove that conditional versions imply strong forms of log-concavity. We give several applications of this fact, including improvements of some results of Wagner [15]; a new proof of a theorem of Liggett [9] stating that ultra-log-concavity of sequences is preserved by convolutions; and some progress on a well-known log-concavity conjecture of J. Mason [12].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filter theory in MTL-algebras based on Uni-soft property

‎The notion of (Boolean) uni-soft filters‎ ‎in MTL-algebras is introduced‎, ‎and several properties of them are‎ ‎investigated‎. ‎Characterizations of (Boolean) uni-soft filters are discussed‎, ‎and some (necessary and sufficient) conditions‎ ‎for a uni-soft filter to be Boolean are provided‎. ‎The condensational property for a Boolean uni-soft filter is established.

متن کامل

Negative correlation and log-concavity

OF THE DISSERTATION Negative correlation and log-concavity by Michael Neiman Dissertation Director: Jeff Kahn This thesis is concerned with negative correlation and log-concavity properties and relations between them, with much of our motivation provided by [40], [46], and [12]. Our main results include a proof that “almost exchangeable” measures satisfy the “FederMihail” property; counterexamp...

متن کامل

Strictly positive measures on Boolean algebras

We investigate strictly positive finitely additive measures on Boolean algebras and strictly positive Radon measures on compact zerodimensional spaces. The motivation is to find a combinatorial characterisation of Boolean algebras which carry a strictly positive finitely additive finite measure with some additional properties, such as separability or nonatomicity. A possible consistent characte...

متن کامل

Property (h) and cellularity of complete Boolean algebras

A complete Boolean algebra B satisfies property (h̄) if and only if each sequence x in B has a subsequence y such that the equality lim sup zn = lim sup yn holds for each subsequence z of y. This property, providing an explicit definition of the a posteriori convergence in complete Boolean algebras with the sequential topology and a characterization of sequential compactness of such spaces, is c...

متن کامل

The Strong Amalgamation Property and (effective) Codescent Morphisms

Codescent morphisms are described in regular categories which satisfy the so-called strong amalgamation property. Among varieties of universal algebras possessing this property are, as is known, categories of groups, not necessarily associative rings, M -sets (for a monoid M), Lie algebras (over a field), quasi-groups, commutative quasi-groups, Steiner quasi-groups, medial quasigroups, semilatt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011